Course Description: This course exposes students to current research published in major scientific journals. Students will learn how to read and interpret methodologies and results published by other scientists. This course will provide the student with a thorough understanding of the strengths and limitations of scientific writing. This course is taught at a higher level than Critical Reading I and focuses on critiquing and developing opinions on scientific articles. Although this is the second of a two-course sequence, the first course (Critical Reading I) is not a pre-requisite. This course is team taught with a different instructor facilitating the discussion each week on a topical paper of choice.

Prerequisite: None
Co-requisite: None

Goals of Course & Course Objectives:
Critical Reading II is the second course in a two-course sequence that is designed to teach the early graduate student how to read and critically interpret scientific papers taken from the primary literature. Reading for knowledge (i.e. textbook reading) is much different than reading critically, and thus the latter must be approached much differently. When one reads for knowledge, the focus is on accepting as fact what is written and absorbing and understanding the material. For critical reading, one must learn how to question and analyze the material. The student should not blindly accept what is written, but must read, absorb, analyze, question and formulate their own opinion as to the validity of the presented results and their interpretation. This is very difficult to become accustomed to and students need to learn, develop and hone this skill by exposure and repeated practice. This class will be taught by a team of professors/instructors that are involved in scientific research covering a broad range of disciplines. Although it is preferred that students taking this class have also taken Critical Reading I, this is not a pre-requisite for this course.

In this class, a different instructor will hand out a paper each week that has been selected by him/her directly from the primary literature. The instructor may also hand out additional specific relevant background information at this time. You will have one week to read the material, take notes and write down questions you may have. During the following class we will discuss the paper with the instructor. The idea is for you to discuss the paper with the rest of the class and the instructor and decide for yourself whether or not it is a good paper. The instructor is there to guide you and ask leading and thought-provoking questions for discussion, not to provide the critique. You must be ready and able to critique the science as well as the writing. Don’t be shy, everyone has his/her own opinion and yours is always valid. Your opinion does not have to match that of the instructor! This course is designed to provide a venue for you to verbalize your own scientific opinions (not political, moral or otherwise). This will (hopefully) sometimes lead to lively debate and disagreement between individuals about the purpose or validity of an experiment or study. As long as we all remember that we each have valid opinions and that we should be respectful of others’ opinions, this is a good thing!

Student Learning Outcomes (Course Competencies):
1. The student will be able to interpret, summarize, present and discuss studies from the primary literature.
2. The student will be able to identify the “big picture” of a study and how it fits into the field.
3. The student will be able to express his or her opinion on the validity of individual experiments and results.
4. The student will be able to defend his or her scientific opinions in a coherent and rational manner.
Course Assessment/Methods of Evaluation:
This is NOT a didactic-type class. In order for you to get something out of it you need to participate, and in order to do that you need to actually read each paper carefully (typically more than once) well before the class. DO NOT WAIT UNTIL THE HOUR BEFORE CLASS TO LOOK AT THE PAPER FOR THE FIRST TIME! If you do this, it will be obvious during class and it will be a very boring class as nobody will be speaking.

Grading is done on every class by the team instructor for that class. Scores for each class are out of a total 31 points and are broken down as follows:

- **Attendance**: 1 pt / class for a total of 13 (not including intro and final).
- **Reading the paper**: Scale of 1 to 10 for each paper (i.e. 13 papers would be a total of 130 pts maximum for this category).
- **Participation**: Scale of 1 to 10 for each class (130 pts max).
- **Comprehension**: Scale of 1 to 10 for each paper (130 pts max).

In the following example, for 13 classes with 13 papers discussed, the total score possible would be:

Attendance	= 13
Reading the paper	= 130
Participation	= 130
Comprehension	= 130
Total	= 403

Each person’s total score will be divided into the maximum possible, multiplied by 100 and then rounded to obtain a percentage: i.e. $380/403 = 0.9429 = 94\% = A$

The following scale will be used to convert to a letter grade:

<table>
<thead>
<tr>
<th>Letter Grade</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-</td>
<td>70-73%</td>
</tr>
<tr>
<td>C</td>
<td>74-76%</td>
</tr>
<tr>
<td>C+</td>
<td>77-79%</td>
</tr>
<tr>
<td>B-</td>
<td>80-83%</td>
</tr>
<tr>
<td>B</td>
<td>84-86%</td>
</tr>
<tr>
<td>B+</td>
<td>87-89%</td>
</tr>
<tr>
<td>A-</td>
<td>90-93%</td>
</tr>
<tr>
<td>A</td>
<td>94-96%</td>
</tr>
<tr>
<td>A+</td>
<td>97-100%</td>
</tr>
</tbody>
</table>

Linked Program Learning Outcomes:
The student learning outcomes listed above address the following Biotechnology Program PLOs:

- **PLO-1.** The student will demonstrate English communication skills in both oral and written forms.
- **PLO-4.** The student will demonstrate independent and critical thinking skills integrated with the ability to utilize multiple informational resources.
- **PLO-5.** The student will explain the principles, mechanisms and interrelatedness of both in vivo and in vitro biochemical, molecular biological and genetic processes.

Textbook:
Papers will be from the primary literature and will be as assigned.

Course Content:
Critique and review of studies from the primary literature as assigned.

Other Class Policies:
Attendance:
Naturally, you will learn nothing in this course unless you attend the classes. There is nothing you can read that can substitute for first-hand discussion of a paper. Thus attendance plays an important part in this course. Each class will be worth a total of 31 points towards your score (as described above). If you miss a class and do not make it up, you will receive points towards reading the paper and comprehension (20 points, based on the honor system) but you will receive zero for attendance and participation. Thus, missing one class will still allow you to get an A+ (if you score perfectly for
all other classes), but not missing two or more as your total possible score will be reduced by 11 points for each absence. This is roughly equivalent to a one letter grade reduction for each absence after the first.

Missed classes CAN be made up by a one-on-one meeting/discussion with the instructor of the missed class (at their discretion) and should be arranged directly with that instructor at a mutually convenient time.

Participation:
As described above, participation is a major component of this course.

Academic Honesty:
Any student who commits an act of scholastic dishonesty is subject to discipline. Scholastic dishonesty includes, but is not limited to, cheating, plagiarism, collusion, the submission for credit of any work or materials that are attributable in whole or in part to another person, taking an examination for another person, any act designed to give unfair advantage to a student or the attempt to commit such acts.

Cheating
Dishonesty of any kind involving examinations, assignments, alteration of records, wrongful possession of examinations, and unpermitted submission of duplicate papers for multiple classes or unauthorized use of keys to examinations is considered cheating. Cheating includes but is not limited to:
- Using or attempting to use unauthorized materials to aid in achieving a better grade on a component of a class.
- Falsifying or inventing any information, including citations, on an assigned exercise.
- Helping or attempting to help another in an act of cheating or plagiarism.

Plagiarism
Plagiarism is presenting the words or ideas of another person as if they were your own. Materials, even ideas, borrowed from others necessitate full and complete acknowledgment of the original authors. Offering the work of another as one's own is plagiarism and is unacceptable in the academic community. A lack of adequate recognition constitutes plagiarism, whether it utilizes a few sentences, whole paragraphs, articles, books, audio-visual materials, or even the writing of a fellow student. In addition, the presentation of material gathered, assembled or formatted by others as one's own is also plagiarism. Because the university takes such misconduct very seriously, the student is urged to carefully read university policies on Misconduct in Research and Other Scholarly Activity 05.00. Examples of plagiarism are:
- Submitting an assignment as if it were one's own work when, in fact, it is at least partly the work of another.
- Submitting a work that has been purchased or otherwise obtained from an Internet source or another source.
- Incorporating the words or ideas of an author into one's paper without giving the author due credit.

Adding/Dropping:
The official deadline for adding and dropping courses is as published in the academic calendar and Graduate Bulletin (typically the day before Census Day). However, students are strongly encouraged to meet with their graduate advisor or the Program Coordinator prior to adding/dropping courses. Movement into and out of classes after the 4th class day requires approval of the Program Director. Students can drop until mid-semester without a WP or WF. Drops after mid-semester require approval of the Dean. Each student is responsible for their own enrollment status with the university.

Disability Accommodations:
UTHSCT abides by Section 504 of the Rehabilitation Act of 1973 and the Americans with Disabilities Act, which mandate reasonable accommodations be provided for students with documented disabilities. If you have a disability and may require some type of instructional and/or examination accommodations, please contact me early in the semester so that I can provide or facilitate provision of accommodations you may need. If you have not already done so, you will need to register with the Student Services Office (located on the UT Tyler Campus). You may call 903-566-7079 for more information.