Course Description: Graduate-level course of biotechnological aspects of gene expression, transcription control mechanisms; molecular cloning, and its applications to biotechnology at the molecular level. The student will gain a thorough understanding of fundamental molecular biochemical principles used in biotechnology, including basic background information, theory and applications.

Prerequisite: As per program admission. Co-requisite: None

Goals of Course & Course Objectives:

Course Objectives:
1. To be able to communicate and discuss fundamental molecular biochemical principles.
2. To be able to discuss the background and theory behind various nucleic-acid-based biotechnology techniques.
3. To be able to find and process scientific information.

Student Learning Outcomes (Course Competencies):
1. The student will be able to explain the thermodynamic principles behind enzymatic catalysis.
2. The student will be able to describe the structural features of nucleic acid and compare and contrast its different forms and modifications.
3. The student will be able to discuss the mode of action of restriction enzymes and describe their uses in biotechnology.
4. The student will be able to explain the DNA replication process, discuss the various steps and place them in context to cellular function.
5. The student will be able to explain transcription, discuss the various steps and place them in context to cellular function.
6. The student will be able to explain translation, discuss the various steps and place them in context to cellular function.

Course Assessment/Methods of Evaluation:
Student understanding will be evaluated with comprehensive examinations of a purely subjective nature covering each topic in detail, evaluations of quizzes, homework assignments, and class participation.

- **Examinations (60%)**: There will be two comprehensive exams (a midterm and a final). These two exams will be of a subjective format based on preceding modules and are each worth 30% of the final grade. Both of these are take-home exams.
- **Quizzes/Assignments (20%)**: There will be at least five short quizzes/assignments (in-class or online). The lowest scores will be dropped, and the highest four scores will be combined and be worth 20% of the total grade (5% each).
- **Class Participation (20%)**: This will be based on attendance, participation in class polls, discussions and assignments.
Assignment/Exam/Quiz Submission Policy:
Students are expected to turn in all class assignments, exams and quizzes on time.

Late assignments will be handled as follows:

1 day late
2 days late
3 days late
4+ days late
5% deduction from the assignment grade
10% deduction from the assignment grade
20% deduction from the assignment grade
No credit will be given for the assignment.

Late Exams or Quizzes will be handled as follows:

1 day late
2-3 days late
4-7 days late
7+ days late
5% deduction from the exam/quiz grade
10% deduction from the exam/quiz grade
20% deduction from the exam/quiz grade
30% deduction from the exam/quiz grade

Attendance:
Students are expected to attend all classes. Students will be allowed to miss 1 class without penalty. Additional absences will be handled as follows:

2 absences
3 absences
4 absences
5+ absences
Lose 20% of class participation grade
Lose 30% of class participation grade
Lose 40% of class participation grade
Student will have to remediate in class participation

Students will be considered absent if they arrive more than 15 minutes after the start of class.

Emergencies
In the event of an emergency or sickness, the student MUST contact me and/or the Program Coordinator (Kim Tutt) by phone or email no later than the day of the expected absence. Failure to do so will result in the absence being counted as 2 absences, resulting in a 10% decrease in this category of the class grade.

Linked Program Learning Outcomes:
The student learning outcomes listed above address the following Biotechnology Program PLOs:

- PLO-1. The student will demonstrate English communication skills in both oral and written forms.
- PLO-4. The student will demonstrate independent and critical thinking skills integrated with the ability to utilize multiple informational resources.
- PLO-5. The student will explain the principles, mechanisms and interrelatedness of both in vivo and in vitro biochemical, molecular biological and genetic processes.

Textbook:
Course Content & Schedule:
08/27 – INTRODUCTION
- Course description, format and grading policies.

MODULE 1: Review and important thermodynamic concepts.
- Prokaryotes/Eukaryotes (Chapter 1; pp3-19, 26-28, 34-37)
- Aqueous solutions (Chapter 2; pp40-45)
- Thermodynamic Principles (Chapter 3; pp58-59)

09/03 – Labor day (no class) Quiz 1 on Module 1 on Moodle (due before next class)

09/10 – Review Quiz 1 and cover Module 2.

MODULE 2: Nucleic Acid Structure
- Theory and properties (Chapter 5)
- Applications
 - Nucleic acid purification (Chapter 6; pp156-159)
 - Nucleic acid sequencing (Chapter 7; pp176-185)
 - Nucleic acid synthesis (Chapter 7; pp209-214)

Quiz 2 on Module 2 available on Moodle (due before next class)

09/17 – Review Quiz 2 and cover Module 3.

MODULE 3: Enzymes & Biotech
- Review of enzyme function and regulation (Chapter 13; pp469-480)
- Restriction enzymes
- Polymerases

09/24 – **MODULE 4:** DNA Topology (part 1)
- Double helix (Chapter 29)
- Base pairing
- Methylation
- Circular/linear
- Supercoiling

10/01 – **In class we will do some review and a class discussion problem based on the following:**

****MODULE 4:** DNA Topology (part 2)
Before coming to class, you will need to have done this section in Moodle:
- Topoisomerases
 - Type I
 - Type II
 - Bacterial vs Eukaryotic Topos

Take Quiz 3 on Module

10/08 – **MODULE 5:** DNA Replication (part 1)
- Eukaryotes (Chapter 30)

10/15 – **MODULE 5:** DNA Replication (part 2)
- Prokaryotes

Midterm exam will be handed out (on MODULES 1-5; take-home)
10/22 – **MODULE 6**: Transcription

Midterm exam due before start of class

- Prokaryotic RNA pols (Chapter 31; 1260-1283)
- Eukaryotic RNA pols

10/29 – **MODULE 7**: Transcriptional Control (part 1)

- Midterm exam handed back and reviewed
- Prokaryotic control systems
 - Repressors vs Activators
 - *E. coli lac* operon
 - Other operons & applications in biotechnology

11/05 – **MODULE 7**: Transcriptional Control (part 2)

- Eukaryotic control systems
- Enhancers and other elements
- Transcription assays

11/12 – **MODULE 7**: Transcriptional Control (part 3)

- In-class exercises
- Reverse Transcriptase
- **Quiz 4 on Module 7** – take online, outside of class time

11/19 – **MODULE 8**: Translation (part 1)

- How to read DNA
- tRNA and tRNA Synthetases
- Ribosomes

11/26 – **MODULE 8**: Translation (part 2)

- Ribosomes (con’t)
- **Quiz 5 on Module 8** – take online, outside of class time

12/03 – **MODULE 8**: Translation (part 3) and review

Final exam will be available for download on Moodle (on MODULES 6-8; take-home)

12/10 – **FINALS WEEK**

Final exam will be due by 5 pm sharp! – no class will be held.

Other Class Policies:

Attendance:
Regular or punctual attendance is expected. If a student misses a class or lab, the student is responsible for obtaining any information distributed during those times. Make-ups are possible only under certain instances (labs cannot be made up). Arrangements for any make-ups and/or missed labs should be discussed directly with the instructor for that day’s class.

Academic Honesty:
Any student who commits an act of scholastic dishonesty is subject to discipline. Scholastic dishonesty includes, but is not limited to, cheating, plagiarism, collusion, the submission for credit of any work or materials that are attributable in whole or in part to another person, taking an examination for another person, any act designed to give unfair advantage to a student or the attempt to commit such acts.
Cheating
Dishonesty of any kind involving examinations, assignments, alteration of records, wrongful possession of examinations, and unpermitted submission of duplicate papers for multiple classes or unauthorized use of keys to examinations is considered cheating. Cheating includes but is not limited to:

- Using or attempting to use unauthorized materials to aid in achieving a better grade on a component of a class.
- Falsifying or inventing any information, including citations, on an assigned exercise.
- Helping or attempting to help another in an act of cheating or plagiarism.

Plagiarism
Plagiarism is presenting the words or ideas of another person as if they were your own. Materials, even ideas, borrowed from others necessitate full and complete acknowledgment of the original authors. Offering the work of another as one's own is plagiarism and is unacceptable in the academic community. A lack of adequate recognition constitutes plagiarism, whether it utilizes a few sentences, whole paragraphs, articles, books, audio-visual materials, or even the writing of a fellow student. In addition, the presentation of material gathered, assembled or formatted by others as one's own is also plagiarism. Because the university takes such misconduct very seriously, the student is urged to carefully read university policies on Misconduct in Research and Other Scholarly Activity 05.00. Examples of plagiarism are:

- Submitting an assignment as if it were one's own work when, in fact, it is at least partly the work of another.
- Submitting a work that has been purchased or otherwise obtained from an Internet source or another source.
- Incorporating the words or ideas of an author into one's paper without giving the author due credit.

Adding/Dropping:
The official deadline for adding and dropping courses is as published in the academic calendar and Graduate Bulletin (typically the day before Census Day). However, students are strongly encouraged to meet with their graduate advisor or the Program Coordinator prior to adding/dropping courses. Movement into and out of classes after the 4th class day requires approval of the Program Director. Students can drop until mid-semester without a WP or WF. Drops after mid-semester require approval of the Dean. Each student is responsible for their own enrollment status with the university.

Disability Accommodations:
UTHSCT abides by Section 504 of the Rehabilitation Act of 1973 and the Americans with Disabilities Act, which mandate reasonable accommodations be provided for students with documented disabilities. If you have a disability and may require some type of instructional and/or examination accommodations, please contact me early in the semester so that I can provide or facilitate provision of accommodations you may need. If you have not already done so, you will need to register with the Student Services Office (located on the UT Tyler Campus). You may call 903-566-7079 for more information.