BIOT 6311 Biotechnology I Credit Hours: 3

Semester: Fall Year: 2018
Class Day/Time: Fridays, 9am-5pm Class Location: Room 116.1 & Lab B4

Instructor of Record: Dr. Vijay Boggaram
Office: C4 Office Phone: 903-877-7780 E-Mail: Vijay.Boggaram@uthct.edu Office Hours: Mondays, 10 – 11 AM

Course Description: A comprehensive study of molecular biology applications and techniques as they relate to biotechnology. The topics covered in this course include RNA isolation and real-time quantitative PCR, gene cloning, mutation of DNA, bioinformatics, expression of recombinant proteins, large-scale production of proteins through fermentation, and generation of transgenic animals.

Prerequisite: BIOT 5221/5221L & BIOT 6336 Co-requisite: None

Goals of Course & Course Objectives:

Course Objectives:
1. To demonstrate proficiency in advanced molecular biology techniques.
2. To become certified to correctly handle radioisotopes.
3. To understand and comply with standards of professional ethics.
4. To fully understand lab safety issues associated with toxic chemicals, radioisotopes, infectious agents, and manipulation of DNA.
5. To be able to correctly, completely and accurately maintain a laboratory notebook suitable for lab use and legal records.

Student Learning Outcomes (Course Competencies):
1. The student will be able to correctly maintain an accurate record of laboratory procedures, techniques and exercises.
2. The student will be able to perform experiments and evaluate data collected from advanced DNA processing and manipulation techniques in molecular biology.
3. The student will be able to produce professional industrial and research laboratory quality scientific write-ups.
4. The student will demonstrate an advanced understanding of molecular biology experimental design and data analysis.
5. The student will demonstrate an understanding of advanced molecular biology techniques, including advanced background information and theory, applications, limitations, advantages and disadvantages, common problems and troubleshooting.

Course Assessment/Methods of Evaluation:
Student understanding will be evaluated based on written lab reports and lab participation. Student may alternatively be evaluated with lab quizzes.

- Written Lab Reports: Lab reports are required for all labs performed unless otherwise noted. These should be written in correct scientific technical format, and will be scored based on content, clarity, and quality of writing. These reports must include the following seven (7) sections: Title, Abstract (Summary), Introduction (Purpose and Background), Materials and Methods, Results, Discussion, and any References (required only as needed). The report should clearly address any specific questions that may be posed by the instructor.
Class Participation and Attendance.

Grading: Based on accumulation of points.

1. Lab attendance (participation): 100 pts each (14 lab days: 1400 pts)
2. Lab Reports: 100 pts each (7 reports: 700 pts)
3. Quizzes: 25 pts each (13 Pre-lab quizzes: 325, 4 Post-Lab quizzes: 100 pts) (Total: 425)

Point total = 2,525 pts

Final Exam (optional) up to 255 pts can be added to your point total (potentially bumping you up one full letter grade).

Your grade will be determined based on the total points you accumulated divided into the total points possible:

- A = 90% to 100% (2273+ pts)
- B = 80% to 89% (2020 – 2272 pts)
- C = 70% to 79% (1768 – 2019 pts)
- D = 60% to 69% (1515 – 1767 pts)
- F = <60% (<1515 pts)

The Final Exam is optional and can only bring up your grade, not reduce it.

- A grade of less than a B may result in loss of Graduate Assistantships.
- No grades will be withheld to wait for completion of work except in extreme circumstances. (Get all your assignments submitted before the end of semester!)
- Reports will be due by 5pm one week after completion of the series of labs on that topic.

Late reports will lose 5% for one day late, 10% for 2-3 days late, 20% for 4-7 days late, 30% for over 7 days late. Lab reports will not be accepted after 2 weeks late and you will receive a zero.

- Lab reports will be expected to be formal write-ups with an emphasis on computer manipulation and presentation of data as is expected in industry and research laboratories. These reports must include the following seven (7) sections: Title, Abstract (Summary), Introduction (Purpose and Background), Materials and Methods, Results, Discussion, and any References (required only as needed). The report should clearly address any specific questions that may be posed by the instructor.

Linked Program Learning Outcomes:
The student learning outcomes listed above address the following Biotechnology Program PLOs:

- PLO-1. The student will demonstrate English communication skills in both oral and written forms.
- PLO-2. The student will demonstrate mastery of basic and advanced biotechnology methods
- PLO-3. The student will demonstrate the ability to safely operate basic and advanced laboratory equipment, analytic devices and computers.
- PLO-4. The student will demonstrate independent and critical thinking skills integrated with the ability to utilize multiple informational resources.
- PLO-5. The student will explain the principles, mechanisms and interrelatedness of both in vivo and in vitro biochemical, molecular biological and genetic processes.
Textbook:

Course Content:

1. August 31 - INTRODUCTION & OVERVIEW OF CLASS (Boggaram)
 - OVERVIEW of GENERAL PCR PRINCIPLES
 Pre-Lab Quiz 1 – take it in the class

2. Sept 7 – Yeast Genetics 1 (Kapoor) – *Pre-Lab Quiz 2*

3. Sept 14 - Yeast Genetics 2 (Kapoor) - *Pre-Lab Quiz 3*
 Yeast Genetics Lab Report - Submit on Moodle before next class!

4. Sept 21 – METHODS FOR INTRODUCING MUTATIONS (Sakai) - *Pre-Lab Quiz 4*
 - Design of PCR-based mutagenesis strategies and procedures.
 - Site-directed mutagenesis experiments.
 Mutagenesis Lab Report - Submit on Moodle before next class!

5. Sep 28 – Gel-Shift Assays (Samten) - *Pre-Lab Quiz 5*
 - Principles of gel-shift
 - Super-shifting
 Gel-shift Lab Report - Submit on Moodle before next class!

6. Oct 5 - REAL-TIME QUANTITATIVE PCR 1 (Pendurthi) - *Pre-Lab Quiz 6*
 - Lecture on principles and operation of Real Time PCR instrumentation
 - Lab- quantitation of templates-detection of single DNA molecules?

7. Oct 12 - REAL TIME QUANTITATIVE PCR 2 (Pendurthi)
 - Continuing lectures on principles and operation of Real Time PCR instrumentation
 - Setup and analysis of PCR and melt curve experiments
 qPCR Lab Report - Submit on Moodle before next class!

8. Oct 19 - RESTRICTION ENZYME ANALYSIS (Pendurthi) - *Pre-Lab Quiz 7*
 - Use of restriction enzymes to solve complex DNA structural problems.
 Restriction Analysis Lab Report - Submit on Moodle before next class!

9. Oct 26 – Reporter Assays (Tang) - *Pre-Lab Quiz 8*
 - Luciferase
 - Alkaline Phosphatase
 Reporter Assay Lab Report - Submit on Moodle before next class!
10. Nov 2, 9 am – 12 noon - TRANSGENIC/KNOCKOUT ANIMALS (Samten)
 - Pre-Lab Quiz 9
 • Purposes for transgenic animals and principles of their development.
 • Purposes for knockout animals and principles of their development.
 Quiz 2 – Take on Moodle before next class!

1 pm – 5 pm - MICROBIOLOGY, CLINICAL LABORATORY (Elliott)
 • Lecture

11. Nov 9 – MICROBIOLOGY, CLINICAL LABORATORY (Elliott) - Pre-Lab Quiz 10
 • Microbiology staining procedures.
 • Quality assurance in the clinical laboratory.
 • Mechanisms of antibiotic resistance
 • Susceptibility testing
 Quiz 3 – Take on Moodle before next class!

12. Nov 16 - RNA STRUCTURE, FUNCTION & BIOTECHNOLOGY (Shetty)
 - Pre-Lab Quiz 11
 • siRNA
 • microRNA
 Quiz 4 – Take on Moodle before next class!

13. Nov 23 - THANKSGIVING HOLIDAY - no class

14. Nov 30 - PROTEIN EXPRESSION 1 (Neuenschwander/Sakai) - Pre-Lab Quiz 12
 • PCR strategies designed for expression
 • Different strategies for expression in bacteria, yeast, insect cells, mammalian cells
 • DNA strategies for protein purification- 6His tags, Xpress, thioredoxin, enterokinase, etc.
 Quiz 5 – Take on Moodle before next class!

15. Dec 7 - PROTEIN EXPRESSION 2 (Sakai) - Pre-Lab Quiz 13
 • Expression of large-scale cultures.
 • Use of the fermenter (yeast culture)
 Protein Expression Lab Report - Submit on Moodle before end of semester!

16. FINALS WEEK
 Final Exam (optional)
 • Course evaluations & faculty evaluations.

Other Class Policies:
Attendance:
Regular or punctual attendance is expected. If a student misses a class or lab, the student is responsible for obtaining any information distributed during those times. Make-ups are possible only under certain instances (labs cannot be made up). **Arrangements for any make-ups and/or missed labs should be discussed directly with the instructor for that day's class.**

Academic Honesty:
Any student who commits an act of scholastic dishonesty is subject to discipline. Scholastic dishonesty includes, but is not limited to, cheating, plagiarism, collusion, the submission for credit of any work or materials that are attributable in whole or in part to another person, taking an examination for another person, any act designed to give unfair advantage to a student or the attempt to commit such acts.

Cheating
Dishonesty of any kind involving examinations, assignments, alteration of records, wrongful possession of examinations, and unpermitted submission of duplicate papers for multiple classes or unauthorized use of keys to examinations is considered cheating. Cheating includes but is not limited to:
- Using or attempting to use unauthorized materials to aid in achieving a better grade on a component of a class.
- Falsifying or inventing any information, including citations, on an assigned exercise.
- Helping or attempting to help another in an act of cheating or plagiarism.

Plagiarism
Plagiarism is presenting the words or ideas of another person as if they were your own. Materials, even ideas, borrowed from others necessitate full and complete acknowledgment of the original authors. Offering the work of another as one's own is plagiarism and is unacceptable in the academic community. A lack of adequate recognition constitutes plagiarism, whether it utilizes a few sentences, whole paragraphs, articles, books, audio-visual materials, or even the writing of a fellow student. In addition, the presentation of material gathered, assembled or formatted by others as one's own is also plagiarism. Because the university takes such misconduct very seriously, the student is urged to carefully read university policies on Misconduct in Research and Other Scholarly Activity 05.00. Examples of plagiarism are:
- Submitting an assignment as if it were one's own work when, in fact, it is at least partly the work of another.
- Submitting a work that has been purchased or otherwise obtained from an Internet source or another source.
- Incorporating the words or ideas of an author into one's paper without giving the author due credit.

Adding/Dropping:
The official deadline for adding and dropping courses is as published in the academic calendar and Graduate Bulletin (typically the day before Census Day). However, students are strongly encouraged to meet with their graduate advisor or the Program Coordinator prior to adding/dropping courses. Movement into and out of classes after the 4th class day requires approval of the Program Director. Students can drop until mid-semester without a WP or WF. Drops after mid-semester require approval of the Dean. Each student is responsible for their own enrollment status with the university.

Disability Accommodations:
UTHSCT abides by Section 504 of the Rehabilitation Act of 1973 and the Americans with Disabilities Act, which mandate reasonable accommodations be provided for students with documented disabilities. If you have a disability and may require some type of instructional and/or examination accommodations, please contact me early in the semester so that I can provide or facilitate provision of accommodations you may need. If you have not already done so, you will need to register with the Student Services Office (located on the UT Tyler Campus). You may call 903-566-7079 for more information.